

	RN-003-1015025 Seat No.	
B. Sc.	. (Sem. V) (CBCS) (W.I.F. 2016) Exam	ination
	February - 2019	
	Physics: Paper - 501	
	Faculty Code: 003	
	Subject Code: 1015025	
Time · 2	$2\frac{1}{2}$ Hours] [Total M	Iarks : 70
imic .		iding
Instruct	tions: (1) Attempt all questions.	
	(2) Figures on right side indicate mark	is.
1 (A)	Answer the following questions:	4
- ()	(1) The value of coefficient a_n is	_
	Fourier series in interval $(-l, l)$.	
	(2) For even function, the value of b_n is	
	in Fourier series for interval $(-\pi, \pi)$.	
	(3) Sine series also known as serie	s.
	(4) For odd function $f(-x) =$	
(B)	Give any one answer in brief from following	2
	questions:	
	(1) Obtain the complex form of Fourier series.	
	(2) Explain the advantages of Fourier series.	
(C)	Give any one answer in detail from following	3
	questions :	
	(1) Explain the properties of Dirac Delta func	tion.
	(2) Obtain the Fourier cosine series.	
(D)	Write a note on any one in detail from	5
	following questions:	
	(1) Obtain the Fourier series for full wave red	tifier
	function.	
	(2) Explain in detail Fourier integral.	
RN-003-1	015025] 1	[Contd

2	(A)	Answer the following questions:	4
		(1) When a particles moves three dimension specs, it	
		has degree of freedom.	
		(2) What is the generalized coordinate of a simple pendulum?	
		(3) Write the equation of generalized force.	
		(4) Give the expression of Hamilton's principle.	
	(B)	Give any one answer in brief from following	2
		questions:	
		(1) Explain configuration space.	
		(2) Explain generalized displacement and generalized velocity.	
	(C)	Give any one answer in detail from following	3
		questions:	
		(1) Obtain Newton's second law of motion from	
		Hamilton's principle. (2) Explain Payleigh's discipation function	
		(2) Explain Rayleigh's dissipation function.	
	(D)	Write a note on any one in detail from	5
		following questions:	
		(1) What are called constraint motion? Explain the	
		classification of constraints.	
		(2) Obtain the Lagrange's equation of motion from D'Alembrt's principle for conservative system.	
3	(A)	Answer the following questions:	4
		(1) Write the equation of motion of compound pendulum.	
		(2) Hamiltonian is function of,	
		and	
		(3) Lagrangian $L = L$ (,	
		(4) Define the phase space of n coordinate system.	
	(B)	Give any one answer in brief from following	2
		questions:	
		(1) What is called cyclic coordinate? Explain generalized momentum from it.	
		(2) Discuss physical signification of Hamiltonian.	
RN-	003-1	015025] 2 [Conto	d

	(C)	Give any one answer in detail from folloquestions:	wing 3
		(1) Obtain the Hamilton's canonical equation	n of motion.
		(2) Explain superiority of Lagrangian app	roach over
		Newtonian approach.	
	(D)	Write a note on any one in detail from	5
		following questions:	1 0
		(1) Obtain the equation of simple pend	ulum from
		Lagrange's multiplier method.	, tum
		(2) Explain conservation of linear momen	itum.
4	(A)	Answer the following questions:	4
		(1) The momentum operator in three digiven by	mension is
		$(2) [x, P_x] = \underline{\hspace{1cm}}$	
		(3) The ejected electron in compton effect	t is known
		as electron.	
		(4) The term $\int \psi^* x \psi$ is known as	values
		of position. (5) What is the orthogonality condition?	
	(B)	Give any one answer in brief from follow questions:	ring 2
		(1) Drive the value of $[P_x, P_y]$	
		(2) Normalize the function $\psi = A e^{ikx}$ over	the region
		-a < x < a.	
	(C)	Give any one answer in detail from follow	wing 3
		questions:	
		(1) Explain the experimental study of pl	hotoelectric
		effect.	
		(2) Discuss the uncertainty principle.	
	(D)	Write a note on any one in detail from	5
		following questions:	
		(1) Explain kinematics of Compton effect the equation of Compton shift.	and obtain
		(2) Derive the Schrodinger equation for fr	ree particle
RN-4)	in one dimension. 015025] 3	[Contd
TAT 4-4	, 0:0-T	orongo l	[Ouitu

5	(A)	Answer the following questions:	4
		$(1) L_z = -i\hbar (\underline{\hspace{1cm}})$	
		(2) What is the ground state energy of harmonic oscillator?	
		(3) If A is unit operator then, $\alpha A\rangle =$	
		(4) What is the Hamiltonian for a linear harmonic oscillator?	
	(B)	Give any one answer in brief from following questions:	2
		(1) Explain linear operator.	
		(2) Obtain the wave function of harmonic oscillator from bra and ket notation.	
	(C)	Give any one answer in detail from following questions:	3
		(1) Explain the coherent state.	
		(2) Explain ket and bra vector.	
	(D)	Write a note on any one in detail from following questions:	5

Obtain the simplified form for the oscillator from

Obtain the Hermite's differential equation.

Schrodinger equation.

(1)

(2)